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Abstract

This paper describes and illustrates two maiched- filter-
theory based schemes for obtaining maximized and time-
correlated gust-loads for a nonlinear airplane. The first scheme
is computationally fast because it uses a simple one-dimensional
search procedure 1o obtain its answers. The second scheme is
computationally slow because it uses a more complex multi-
dimensional search procedure to obtain its answers, but it
consistently provides slightly higher maximum loads than the
first scheme. Both schemes are illustrated with numerical
examples invalving a nonlinear control system.

Nomenclature
BM bending moment
exc(lLp) ilerative excitation waveform time history obtained
from opumization design variables (p)
F(p) objective function
£(p) constraint function
k impulse strength
KS(p) Kreisselmeier Steinhauser function
i iteration number
p vector of design variables
RMS root mean squiire
RMS(x) root mean suare of (‘|u.'|nlily X
t g
™ torsion momernt
o arbitrary time shift
WOBTM  wing outboard torsion momern
WRBM  wing root bending moment
y(1) time response of output quantity y
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y(4,p) time response of output quantity y to iterative
excitation waveform

Yh(D) time response of output quantity y to an impulse

yy(t) time response of output quantity y to excitation
matched oy

7(t) time response of output quantity z

7y(t) time response of output quantity z to excitation
matched to y

P scalar multiplying factor used in the KS function

Iy root-mean-square of gust velocity

Introduction

Time-correlated gust loads are time histories of two or
more load quantities due to the same disturbance time history.
Time correlation provides knowledge of the value (magnitude
and sign) of one load when another is maximum. Figure 1
contains an illustration of time-correlated gust loads. At least
two analysis methods have been identified (refs. 1 and 2) that are
capable of computing maximized time-correlated gust loads for
lincar aircraft. Both methods solve for the gust profile (gust
velocity as a function of time) that produces the maximum load at
a given location on a linear airplane. Time-correlated gust loads
are obtained by re-applying this gust profile to the airplane and
computing multiple simultaneous load responses. The load
responses are physically realizable at all instants of time during
the time history (including the instant at which a given load is
maximum), and correlated loads at any of these instants may be
applied to aircraft structures.

BM,
% Time

BM,

v&,mh— Time

BM,
A A~ Time
™,

LvAQoA— Time

Figure 1.- Time-correlated gust loads.




Within the past several years there has been much interest
in obtaining a practical anatysis method that is capable of solving,
the analogous problem for nonlinear aircraft. Such an analysis
method, and the broader issues of harmonizing existing criteria
and minimizing the number of different analyses required for
certification, have been the on-going focus of an international
commitice of gust loads specialists formed by the U, S. Federal
Aviation Administration (ref. 3). The method of reference 1is
capable of being, but so far has not been, applied to nonlinear
aircraft. As stated in reference 1, to make the method practical
for nonlincar applications, a scarch procedure is essential. The
method of reference 2 is bascd on Matched Filter Theory (MET)
and, in its current form, is applicable to lincar systems only.

The purpose of the present paper is to extend the method
described in reference 2 to nonlinear systems. The extension
uses MFT as a starting point and then employs a constrained
optimization algorithm to attack the nonlincar problem.
Refercnce 4 contains a status report (as of April 1990) on the
development of this extension.  In the present paper,
methodology development is refined and completed and
numerical results are presented that illustrate an application of the
method to an airplane with & nonlincar control system.

Review of Matched Filter Theory For Lincar Systems

As background for the remainder of this paper, this
section presents the key results from reference 2, the original
development of MET for computing maximized and time-
correlated gust loads for linear airplanes.

_ Figure 2 depicts the steps that must be employed to
implement MFT and illustrates the intermediate and final
products of the process. Frequency-response-function
representations of atmospheric turbulence and airplane loads are
combined in series and represent the "known dynamics"” boxes
in the figure. One-dimensional Gaussian atmospheric
turbulence with the von Karman power spectrum is chosen.
Load y is the load to be maximized. Loads z) through zy, are the
loads to be time correlated with load y. There are three major
steps in the process:

Siep | The application of an impulse function of
unit strength to the combined linear system,
producing the impulse response of load y.

Stgp 2 The normalization of this impulse response
by its own RMS value, followed by its
reversal in time.

Step 3 The application of this normalized reversed
signal to the combined linear system,
producing time histories of load y and time
histories of loads zj through z,. Within the
time history of load y, the maximum value is
Ymax-

For simplicity of discussion throughout this paper, these three

steps will be referred to as "linear MFT." Within each step,
significant results, interpretations, and implications are:
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Figure 2.- Schematic for lincar matched filter theory.
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Within Step 1 The impulse response of atmospheric
turbulence is shown as an intermediate
quantity. The impulse responses of
loads z) through z, can be computed
but are not used.

The normalized reversed signal, named
the matched excitation wavetorm, now
has a unit RMS value. MFT guarantees
that there is no other unit-RMS
excitation wavelorm that, when applied
10 the combred lincar system, will
produce i va.ue of y larger than ypux.
This guarantee is a fundamental result
of MIFT”

The response of atmospheric turbulence
to the matched excitaion waveform,
named the critical gust profile, has «
given level of probability.  The
responses of atmospheric turbulence to
all  other unit-RMS  excitation
wavelorms have the same given level of
probability.  Load y is named the
maltched load and loads zy through zq
are time correlated with load y. At each
instint of time, the time history of the
matched load 1s proportional to the
autocorrelation function of load y from
a conventional random  process
analysis. At cach instant of time, the
time histories of loads zy through 2,, are
proportional to their corresponding
cross-correlation functions with load y.

Within Step 3

FFor more detailed information about the application of METT to
the calculation of maximized and time-correlated gust loads,
including background, theoretical development, numerical
implementation, and example calculations, the reader is urged to
consult reference 2.

The Application of Malched Filter Theory to
Nonlincar Systems

The poal of MFT as applicd to nonlinear systems 1s the
same as that for linear systems: to find the maximized response
time history, the maximum value of the response within that tune
history, and the time-correlated response time histories. Because
the system is now nonlinear, superposition and other convenient
features of linear MEFT no longer hold, the most convenient
being that problems can be solved directly.  For nonlincar
systems, problems cannot be solved directly and a scarch
procedure 1s the only practical means of finding the solution.
Here "the solution” means scarching tor and finding the
excitation waveform that maximizes ymax. The scarch is
conducted systematically, subject to the constraint that the
excitation waveform have unit RMS, using the techniques of
numericil optimization.

Because superposition no longer holds, the magnitude
and character of the responses are not necessarily proportional to
the magnitude of the input. For the remainder of this paper two
input magnitudes are important: k. the strength of the initial
impulse; and Gy, the design value of the gust intensity. (For
lincar MFT, the magnitude of both of these quantities was
unity.) For nonlinear systems the shape of the excitation
waveform is a function of k and op, and, consequently, the
quantity ymax is also a function of these parameters.

This section of the paper is divided into two subsections.
The first describes a one-dimensional search procedure and the
second describes a multi-dimensional search procedure. The
original goal of the present rescarch was to develop the multi-

dimensional search only. However, in an effort to choose a
reasonable starting point for the multi-dimensional search the
authors happened upon the one-dimensional search, and as will
be shown in the numerical results section of this paper, the one-
dimensional search turned out to be a valuable procedure in its
own right.

One-Dimensional Search P ,

The one-dimensional search procedure performs a
systematic variation of the quantity k to find the shape of an
excitation wavelorm that maxinizes ymyx. Figure 3 contains a
signal flow diagram for this search procedure. Figure 3 is very
similar to figure 2, but contains some subtle yet important
differences that are indicated by the shaded boxes and by
quotation marks. In figure 3 the initial impulse has a non-unity
strength; the aircraft loads portion of the known dynamics box
contains nonlinearities; and the shape of the excitation waveform
and the value of ymax are functions of the initial impulse
strength. In addition, the "matched" excitation waveform and
the "matched” load are shown in quotes because, for nonlinear
systems, there is no guaranice that ymay is a global maximum.

‘The application of the one-dimensional search procedure
15 as follows:

Step |
Step 2
Step 3

Select a design value of oy,
Select a range of values of k.

For each value of k, perform steps 1
through 3 of linear MFT, obtaining values
of ymax and corresponding "matched”
excitation waveforms.

Step 4 From step 3 above, find the maximum
vaiue of ymax and its corresponding
"malched"” excitation waveform.

Multi-Dimensional Search P

The multi-dimensional search procedure uses as its
starting point the maximum value of ymay and the corresponding
"matched” excitation waveform obtained by performing the one-
dimensional search procedure. In an attempt to obtain an even
lurger value of ymax. the shape of the "matched” excitation
waveform is further optimized subject to the unit-RMS constraint
mentioned above. The major features of this optimization
procedure are illustrated in figure 4.

Iniual excitation waveform, - Beginning in the upper left
corner of figure 4, the box labelled initial excitation waveform is
the waveform resulting from the one-dimensional search
procedure.

Coefficient generator, - The purpose of the "coefficient

generator” is to approximate the initial excitation waveform by a
finite number of cocflicients. These coefficients are first used as
the design variables in the optimization procedure and later used
to “reassemble” the final optimized waveform time history.
Because the execution time of the optimization procedure is
roughly proportional to the number of design variables, an
important consideration was to choose an approximation
lechnique that produced in the smallest number of coefficients
for a given goodness of approximation. Several approximation
techniques were considered including the use of orthogonal
{functions and cubic splines.

The orthogonal functions considered were Fourier series
and Chebyshev polynomials. It was found (ref. 4) that it took
about an order of magnitude fewer coefficients to approximate
the initial excitation waveform with Chebyshev polynomials than
to approximate it with Fourier series. Figure 5 shows an initial
cxcitation waveform and approximations to it using first a 20-
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Figure 3.- Schematic for one-dimensional search procedure.

Optimized
Coefficients

Initial Excitation Coefficient Constrained Optimized

Waveform Generator Optimizer Excitation Waveform
rtteraiive Excitation Waveform\ l T ( lterative Gust Profile )
; Excitation Waveform Gust
Exc. - {Generator ( from Coefficients)| | v 'us_t
| - Td p elocity time
\ time 9 y

4 Nonlinear Model ) N (" herative Gustload
Linear v Time-History
Airplane Maximum Load N Maximum
- Load
Nonlinear
K Controlier ) \ time j

Figure 4.- Schematic for multi-dimensional search procedure.

4



term and then a 54-term Chebyshev approximation. The choice
of how many coefficients to include in the approximation was
made by examining a plot of the absolute value of the coefficient
versus the coefficient number.
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(c) Chebyshev approximation using 54 terms.

Figure 5.- Excitation waveform approximations using
Chebyshev polynomials.

A waveform approximation technique based on cubic
splines was also considered. For this method, discrete points in
the waveform time-history were selected as design variables.
The amplitudes of these points could then be changed by the
optimization routine. By using a cubic spline the waveform time
history can be assembled from these discrete points as needed in
the optimization algorithm. As will be shown, this technique did
not provide as accurate an approximation as Chebyshev
polynomials, yet the number of design variables could be
substantially reduced.

Igori - Two optimization
algorithms were considered: a direct method and an indirect
method. This section briefly describes these algorithms.

The direct method (ref. §) chooses search directions
(systematic variations of the values of the coefficients) that
minimize an objective function without violating constraints.
The objective of this particular application is to maximize one of
the loads. This objective function is formulated such that
increasing the load, maximizing wing root bending moment
(WRBM) for instance, reduces the objective function.

Objective: minimize F(p) = - { max| y(t,p) | }2 (1)

over all t

The only constraint is that of keeping the RMS of the
excitation waveform, exc(t,p), at or below a specified value. In
actuality the waveform RMS should remain constant, implying
the necessity for an equality constraint. However, in practice an
inequality constraint performs very well, with the optimizer
driving the value of the constraint to its maximum-allowable
value. This, in effect, gives the desired result while not overly
constraining the design space.

Constraint: g(p) = {RMS| exc(t,p) | - 1.0} 0.0 2)

The indirect method (ref. 6) converts a constrained
optimization problem into an unconstrained problem by
combining the constraints with the objective functions into a
single composite function known as the Kreisselmeier-
Steinhauser function. The KS function is formulated such that it

decreases when the objective function increases and increases
when the constraint is violated. Here, the optimizer varies the
cocfficients to minimize the KS function.

F .
KS() = 1 loge[exp(p{ (e(pi-1}+1- remop) })
vexp(p )]
where F and g are defined in equations (1) and (2).

The shaded box in figure 4 contains the detailed
sequential analysis steps performed. The optimizer cycles
through the shaded box many times per iteration to obtain
gradient information. The accompanying illustrations in the
figure (boxes with rounded corners) show intermediate results
and the nonlinear model.

g The most computationally
expensive aspect of this multi-dimensional search is the
nonlinear simulation, shown in the shaded box in figure 4. The
original simulation model was written in MATRIX,
SYSTEM_BUILD simulation language (ref. 7). This high-level
language proved very slow considering the large number of
simulations required by the optimization algorithms. Therefore,
the entire process was converted to FORTRAN with the code for
the simulation model being created by MATRIX,
HYPER_BUILD (ref. 8). This greatly increased throughput so
that optimization results could be obtained in a reasonable
amount of time. In addition, double precision was used so that
sufficiently accurate gradient information could be obtained from
the simulations.

Numerical Results

This section presents numerical results for the one-
dimensional and multi-dimensional search procedures.

Example System

A nonlinear simulation model of the ARW-2 drone
aircraft equipped with a nonlinear control system was
constructed to demonstrate both search procedures. Figure 6
shows a block diagram of the simulation model and includes the
aeroelastic plant, a gust load alleviation (GLA) control law, and
nonlinear control elements. The aeroelastic plant is a linear, s-
plane aeroelastic half-model consisting of two symmetric rigid-
body modes and three flexible modes. Unsteady aerodynamics
were obtained using the doublet lattice method (ref. 9). The
model also includes the dynamics of the control surface
actuators. The two-input/two-output GLA control law was

Gust Time | Aircraft EOM Load Time
Histo! Histories .-
rigid body & flexible
“Spoiler” modes
sensors
Elevator actuators

Nonlinear Elemen

Ztuselage
Gust Load
Alleviation
Control Law
Nonlinear Element 3
wi
J limit 9
dcmd

Figure 6.- Nonlinear model of aircraft and gust load alleviation
system.



obtained using a linear Quadratic Gaussian design approach
with the intent of reducing wing root bending moment (rel. 10).
The nonlincar elements impose deflection limits of £10° on the
elevators and 0 to +10° on the ailerons, simulating spoilers.

Two versions of this model will be considered: a simple
version having only rigid-body modes (10 states) that served as
a computationally economical test case; and a much larger, fully
flexible model (32 states). These models will be hereinafter
referred to as the rigid and flexible models, respectively.
Analysis conditions for this model are 0.86 Mach number and
24,000 feet altitude.

The one-dimensional search procedure was performed on
the rigid model. In order for the control-surface deflection limits
1o become active in the simulation, an artificially large value of
gust intensity, Gg, was required. With this value chosen, values
of the initial impulse strength, k, were sclected over the range
from 0.1 to 1000. Typical results, in this case corresponding to
maximizing wing root bending moment (WRBM), are presented
in figure 7. Figure 7 contains 3 plots. The lower portion of the
figure contains a plot of WRBM as a function of initial impulse
strength: the solid circles are actual numerical results; the solid
line is a faired line. Three sets of time histories of excitation
waveform and its associated maximized WRBM are shown in
the upper portion of figure 7. The corresponding values of k are
indicated on the figure. For this particular example, a value of k
of about three yields the largest maximized value of WRBM.

6
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Figure 7.- Results from one-dimensional search procedure. Rigid model.

Multi-Di ional Searct

Maximizing WRBM in the rigid model will again be
considered. To more clearly demonstrate the method, a
nonoptimal value of k (k1) was chosen to obtain the initial
excitation waveform for this example. The Chebyshev
waveform approximation was utilized in this example and
required 54 coefficients (design variables). The direct optimizer
was used and the resulting convergence history is shown in
figure 8. This figure shows that the optimization scheme
succeeds in increasing the maximum WRBM while ultimately
satisfying the RMS constraint on the excitation waveform.

Figure 9 shows a comparison of the initial and optimized
time histories for this test case. By considering figures 8 and 9,
two conclusions can be drawn: (1) the multi-dimensional search
procedure succeeds in altering the shape of the excitation
waveform which causes alterations of the various time-histories
and an increase in the maximum WRBM; and (2) the procedure
achieves this increase in maximum load while maintaining the
RMS constraint on the excitation waveform.

Figure 10 presents the results of applying the multi-
dimensional search procedure a number of times. Again WRBM
is the load of interest and again the rigid model is employed.
The direct and indirect optimizers were exercised and excitation
waveforms were approximated by Chebyshev polynomials and
by cubic splines. The numbers in parentheses indicate the
number of terms required to obtain an acceptable approximation
to the waveform. The solid line in figure 10 is the faired line
presented originally in figure 7. For the example shown, the
direct optimizer with the Chebyshev polynomials was the best
combination for reproducing the results from the one-
dimensional search procedure and for obtaining the largest
maximized loads.

The squares and circles in figure 10 represent results of
the initial and final values of the maximum WRBM. In all cases,
at each value of k, the lower symbols represent the initial value
of maximized WRBM and the upper symbols represent the final
value. Regardless of the starting point, the direct optimizer
consistently achieved the same value of maximized WRBM,
indicating that it was more insensitive to the starting point than
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was the indirect optimizer. The direct optimizer also yielded
larger maximum load values and converged in fewer iterations.
In addition, the direct optimizer was able to converge with both
Chebyshev and cubic spline approximations to the excitation
waveform while the indirect optimizer was not able to converge
when the spline approximation was used.

T

In figure 10 the lower gray squares are below the solid
line but the upper gray squares are very close to the highest value
of WRBM achieved. The lower symbols being below the solid
line is due to the fact that the spline approximation does a poorer
Job at reproducing the initial excitation waveform than does the
Chebyshev approximation. However, the spline approximation
does a very adequate job of reproducing the final excitation
waveform and produces maximized WRBMs very close to those
produced by the Chebyshev approximation.

0 10

lterations From the data presented in figure 10, the usefulness and
value of the one-dimensional search procedure becomes
obvious. A very simple and straightforward variation in a single
quantity, k, produced a value of maximized load which is within
1.1% of the value produced by the significantly more complex
multi-dimensional search procedure.

initial (corresponds to k=k; in fig. 7)
————— Optimized
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Figure 9.- Comparison of initial and optimized time-histories. Rigid model.
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Figure 10.- Summary of results for maximizing WRBM using
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Figure 11 shows results for maximizing WRBM using
the flexible model. The solid line again represents results from
the one-dimensional search procedure and the squares represent
results from the multi-dimensional search. In this example,
because of the higher-frequency dynamics in the excitation
waveform, 124 Chebyshev polynomials were required to
produce an adequate approximation of the waveform. The
indirect optimizer was not considered here for the reasons cited
above. Also, the spline approximation was unsuccessful for this
model, even with the direct optimizer. Consistent results were
obtained for the flexible model only when the direct optimizer
and the Chebyshev polynomial approximation were used.

The usefuiness and value of the one-dimensional search
procedure is again illustrated by the results from figure 11. The
simple procedure produced a vilue of maximized load which is
within 0.78% of the value produced by the multi-dimensional
scarch procedure.

So far, the only load considered has been wing root
bending moment. Figure 12 shows results for maximizing wing
outboard torsion moment (WOBTM) for the flexible model. The
solid line represents results from applying the one-dimensional
search procedure to WOBTM. The general shapes of the solid
lines in figures 10, 11, and 12 are very similar. For the multi-
dimensional search procedure, 220 Chebyshev polynomials
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Figure 11.- Summary of results for maximizing WRBM using
the one-dimensional and several multi-dimensional
searches. Flexible model.
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Figure 12.- Summary of results for maximizing WOBTM
using the one-dimensional and several multi-
dimensional searches. Flexible model.

were required to produce an adequate approximation of the
excitation waveform. The solid squares represent only the initial
values of maximized WOBTM; final values are not shown
because, due to the large number of coefficients, a converged
solution was not obtained.

Based on the ability (demonstrated in figures 10 and 11)
of the one-dimensional search procedure to produce maximized
loads very close to those produced by the multi-dimensional
search procedure, it is the opinion of the authors that the value of
the maximum WOBTM is very close to the value predicted by
the one-dimensional search.

Concluding Remarks

This paper has presented two search procedures (one-
dimensional and multi-dimensional) for obtaining maximized
gust loads for a nonlinear airplane using Matched Filter Theory
and constrained optimization. The procedures were applied to an
example airplane with a nonlinear gust load alleviation active
control system. Numerical results confirm that the procedures
are successful in maximizing the loads of interest. For the
example configuration considered, the one-dimensional search
succeeded in obtaining loads that were within about 1% of the
loads produced by the multi-dimensional search procedure. This
suggests that the simpler one-dimensional search method may be
the most practical implementation. In addition, further study is
required of the modelling of excitation waveforms characterized
by high-frequency contents.
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